The Wronski map and Grassmannians of real codimension 2 subspaces

نویسنده

  • A. Eremenko
چکیده

We study the map which sends a pair of real polynomials (f0, f1) into their Wronski determinant W (f0, f1). This map is closely related to a linear projection from a Grassmannian GR(m,m+ 2) to the real projective space RP . We show that the degree of this projection is ±u((m+1)/2) where u is the m-th Catalan number. One application of this result is to the problem of describing all real rational functions of given degree m + 1 with prescribed 2m critical points. A related question of control theory is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wronski map and Grassmanians of real codimension 2 subspaces

For an integer m ≥ 2, let GR = GR(m,m + 2) ⊂ RP , N = m(m + 3)/2, be the Plücker embedding of the Grassmanian of msubspaces in Rm+2 . We consider a central projection of GR into a projective space RP of the same dimension as GR . The topological degree of this projection can be properly defined, although GR may be non-orientable. We find that this degree is 0 for even m , and ±u((m+ 1)/2) for o...

متن کامل

Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry

Suppose that 2d − 2 tangent lines to the rational normal curve z 7→ (1 : z : . . . : z) in d-dimensional complex projective space are given. It was known that the number of codimension 2 subspaces intersecting all these lines is always finite; for a generic configuration it is equal to the d-th Catalan number. We prove that for real tangent lines, all these codimension 2 subspaces are also real...

متن کامل

Rational Functions and Real Schubert Calculus

We single out some problems of Schubert calculus of subspaces of codimension 2 that have the property that all their solutions are real whenever the data are real. Our arguments explore the connection between subspaces of codimension 2 and rational functions of one variable.

متن کامل

ar X iv : 0 90 2 . 11 06 v 2 [ m at h . Q A ] 2 A pr 2 00 9 ON PROJECTIVE EQUIVALENCE OF UNIVARIATE

We pose and solve the equivalence problem for subspaces of Pn, the n + 1 dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is PSL2 acting by projective transformations on the grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence pr...

متن کامل

ar X iv : 0 90 2 . 11 06 v 3 [ m at h . Q A ] 5 J un 2 00 9 ON PROJECTIVE EQUIVALENCE OF UNIVARIATE

We pose and solve the equivalence problem for subspaces of Pn, the (n + 1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001